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Galaxy Clustering: Why Peebles and Zel'dovich Were
Both Right

For about two dccadcs, two theories of galaxy formation based on gravitational

clustering were popular. These were known as the "'top-down'" or "pancake" the-

ory, and the -bottom-up'" or ++hierarchical clustering" theory. Hierarchical theories

seem to fit much of the galaxy dala, but this data also displays sheets and filaments

hmg associated with the pancake theory. Recent numerical experiments have made
it clear that the two lhcories arc not mutually exclusive. In fact, hierarchical inodels

display, a surprising agrccrnenl with extrapolation of the hmg-wavc part of the

spectrum based on the Zcl'dovich approximation, the basis of the pancake theory.

Hoth approximations arc limiting cases which are applicable with varying prccision
over a range of initial conditions. Both are needed to understand phenomena seen
in N-body simulations. In particular the filaments seen in N-body simulations are

"'real.'" in the sense that they are it consequence of initial conditions, and can be

detected even when there is very little power on large scales.

Key _Tords: gravitaliomtl ins'lability, co.sinology, ._'uperclusters, galaxy clustering

By about a quarter of a century ago, the first steps toward a theory
of the clustering of matter in the universe and of experimental

tests of theory had been taken.

Newton recognized that clumpiness would grow in a nearly uni-

form self-gravitating medium, but only much more recently were
the linear solutions for perturbation growth in an expanding uni-

verse found. _During the 1950's and 1960's the Hot Big Bang model

emerged as the favored cosmological theory and by the late 1960's

(omll'lents A _lrophy._.
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specific and physically grounded work on structure formation be-

gan.

At that time, the main components of the early universe were

assumed to be (baryonic) matter and radiation. _ The modern ob-

session with nonbaryonic dark matter was far in the future, al-

though hints had already appeared. ,_ _ In such a medium, one can

imagine two possible kinds of perturbations from homogeneity in

the early hot plasma which could become galaxies later.

The first corresponds to perturbations in the baryon density,

with constant radiation density. These used to bc called "iso-

thermal" perturbations, for obvious reasons. Today "isocurva-

ture" is preferred; it has been noted that a more computationally

tractable and likely scenario would have a modest radiation deficit

accompanying a baryon excess so that the total enclosed mass is

constant. Such perturbations cannot grow, because of the effect

of radiation pressure, when the universe is still hot. But when the

universe cools to a few thousand degrees, hydrogen atoms form

and suddenly become nearly decoupled from radiation. Now the

Jeans mass drops to about 10 6 M,3, and this is the characteristic

scale of condensations one might expect to form first. It was noticed

immediately 7 that this is close to the mass of a globular cluster.

Since globular clusters have generally lower heavy clement abun-

dances than most galaxies and are presumed to be older, it is

natural to speculate whether we are seeing the primordial units of

structure.

Having done a bit of historical motivation, it is now convenient

to sketch the basic tools used. The Fourier transform of the mass

density 9(r) is

f p(r) e ik_ d3r

a_ = (p)V,, (1)

where V,, is the integration volume. The power spectrum

P(k) = (a_) (2)

where it is assumed we average over spherical shells of constant

k. This quantity is especially useful for Gaussian distributions be-
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cause it constitutes a statistically complete description of them.

Gaussian distributions are especially interesting for cosmology be-
cause the Central Limit Theorem tells us they result from the sum

of many uncorrelated random processes, and it is easy to imagine
our ancestral density perturbations resulting from such. In fact,

there is some evidence that Gaussian initial conditions are entirely

sufficient to initiate clustering that would result in something like

our present galaxy clustering pattern. _ It is often assumed for the

sake of simplicity that P is a power-law P(k) _ k" where - 3 < n
< 4. The minimum of -3 is required to have convergence of

density contrast on large scales; the maximum of 4 is required for

stability on small scales and because if n > 4, then 4 will be gen-
erated anyway by dynamics. _

The density contrast _o/p is then

p - (2_) 3 f d3k P(k) W(kx) (3)

where W(kx) is a smoothing window to make the integral converge

for nonzero P at large k. The density contrast is naturally a non-
decreasing function of k.

The solutions for perturbation growth tell us that the contrast
will grow steadily until it becomes nonlinear; at approximately this

time it will decouple from the general expansion, and begin to

collapse, presumably forming some sort of condensed object, such

as a star or galaxy. Since _ is greater on small scales, they will

collapse first; then those objects will merge to form larger ones.
This is the hierarchical clustering picture. Since structures on larger

scales are formed by the merging of small objects, it is natural to
assume that the vagaries of location and mass of the small objects

will determine their ultimate arrangement, so that it will be rather

featureless. Therefore there has been no particular emphasis on
interesting structures on very large scales as an expectation re-

suiting from this point of view.

An in-depth treatment of the model is beyond the purview of

this paper. The reader is referred to Peebles' excellent book I_ for

greater depth, detail, and historical background. Solutions of the
equations of motion are described there also.
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Thesimplestthingtodo(otherthanexactsolutionswithimposed
symmetry)is to linearizetheequationsof motion.If thedensity
iswrittenasp= (p)(1+ _p),applicationofthecontinuityequation,
Eulerequation,andPoissonequationgives

e,(x, t) = b(0_(x, t,) (4)

where h is a factor which can be calculated numerically_; but for

a critical density universe b is just the expansion factor a between

time t and 6.

Another approach was suggested by Zel'dovich. _: The Eulerian

(co-moving) coordinates r of a matter point at time t arc

r(q, t) = q + b(t)V_(q) (5)

where q are the Lagrangian (i.e., initial, unperturbed) coordinates

of the point. This is the famous "Zel'dovich approximation." Note
that the motion (in co-moving coordinates) is essentially inertial;

there is no change in velocity (with b as time parameter) and the

initial vclocity potential ¢(q) is used (Zcl'dovich discusses the der-

ivation of q: which is a simple multiple of the gravitational po-
tential).

The classic first paper t_ is not clear on a number of points.

Although he does not say so, his discussion of the solution indicates
that the density field must be continuous and differentiable. It is

clear that hc kncw of one cosmological scenario in which this would
be true, the so-called "adiabatic" or "isoentropy" perturbations.

Such perturbations assume that both baryons and photons are

compressed, with their energy densities varying by the appropriate

factor. Such perturbations oscillate before decoupling, but photon

diffusion acts as a drag and damps them effectively up _ to a scale
of about 10_2 M.,; therefore one would expect approximately uni-

form density patches with a diameter corresponding to this en-
closed mass. Much later, _4 another scenario in which neutrinos

providc the dark matter also provided a possibility for a smooth
density field. The Zel'dovich approximation became associated

with such simple damped density perturbation fields, which have
P an increasing function of k up to some cutoff k., where it plunges

rapidly toward zero.
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Yetit is not obvious that this is all Zel'dovich had in mind. He

does not exclude the "isothermal" theory as a valid place to apply

his approximation. He realizes small scales will collapse first but
asks "... should one apply the approximate solution to the 'gas'

whose atoms are globular clusters or protostars or small gas clouds'?"

This comment seems to have been ignored for a long time. He

posed the right question, but no one tried to answer it. The be-
ginnings of an answer emerged quite by accident.

It is plain that the approximation (5) will move patches of finite
size eventually into sheets or possible filaments as particles inter-
sect each other. The first word used was "discs" but this is not

quite right• At any rate, the earliest numerical simulations of pan-
cake models _5 led to the realization that highly anisotropic struc-

tures formed. This was expected, but the interconnectedness (which

led to topological analysis of superclusters) 1¢'was not (see Fig. 1).

In retrospect, perhaps it should have been expected, but such
comments are too easy to make. Still people were working within

FIGURE [ A figure drawn from the earliest simulation (Ref. 15) known to the

author to have shown the intcrconnected cell structure t_rising from a truncated

power spectrum. The simulation shown herc is two-dimensional. Copyright Royal

Astronomical Society (UK).
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the framework of adiabatic perturbations or closely related phe-
nomena. There is an excellent review of the development of this
theory since 1970. t7

The more basic question of whether the Zel'dovich approxi-
mation could be applied to hierarchical models appears to have

been completely ignored even though it was clearly posed in his

paper. The first hints appeared in the first simulation _ of Cold
Dark Matter (CDM) which does have nonzero power at large k.

(It is not, howevcr, a scale-free power-law spectrum.) This study

used percolation techniques, which are a sensitive detector of ill-
amentary structure, and got a result indicating that CDM produced

an interconnected network much like that in the pancake model.
This result was obtained independently in a different simulation "_

which used another approximation for the initial power spectrum,
and a different computational method.

The reason for this filamentarity was not investigated for some

time. There are two reasons for this: (a) There was a strong ten-

dency in the field, which still exists, to regard simulations as tests

of whether a given set of initial conditions can produce something
that agrees with observational data, without asking why, without

trying to unearth general principles. (b) Because the CDM power
spectrum has a bend from P(k) _ k at small k to P(k) _ k 3 at

large k, it appears that most of us simply assumed that the bend
was sharp enough to behave like a cutoff, and that the model was

acting like a pancake model due to this change in slope.

The issues were sharpened considerably by an unpublished letter

sent by Peebles to about a dozen persons in the late 1980's. The

letter argued that filaments should be broken up completely by
the force generated by smaller condensations, and should not be

seen. A number of possible numerical effects were suggested as
possibly giving use to a false filament signal, including relics of the

lattice on which many particles began, or the inevitable discrete-

ness of the Fourier decomposition of the imposed power spectrum.

This inspired a closer examination of possible numerical problems

by relaxing some of these conditionsfl ° 2_ successfully eliminating
sources of false signals. No problems were found but the exercise

proved interesting and stimulated further study.
In particular, an approach of controlled experiment was intro-

duced, _ 2_ in which phases of Fourier components _,k were held
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constantfor someor alloftherangeofwavenumbersin theinitial
perturbationspectrum.Onecouldthencompare,for example,
pancakeandhierarchicalmodelsin whichthelinear,long-wave
conditionsarethesame.Thus,giventhehypothesisthatthoselong
wavescontrolthelocationof thefilaments,thesetwosimulations
shouldhaveafamilyresemblance.Theydo.

In Fig.2, weshowoneexampleof suchafamily.Theinitial
spectrawerecharacterizedbyP(k) _ k _ up to some cutoff k, and
P = 0 above that. The columns correspond to constant n and the

rows to constant k,. The family resemblance is strong, and clearly
a function of n. This approach was used in our work. 21"22"24"25 A

closely related and complementary independent approach 2_ was

developed in which families with identical power spectra and var-

ious random phases for k > kc were shown to strongly resemble
each other. All of this established rather well by eye that hierar-

chical models which are going nonlinear on some wavenumber kM.

closely resemble pancake models which had the same initial con-
ditions for k < kNt, but have P = 0 initial conditions for P < kc

-- kNL, and that this resemblance is stronger for more negative n.

It can still be detected by eye, for example, even for n = 1.

Detection by eye has been characterized as a "beauty contest,"
devoid of quantitative content. Correlation functions, stressed in

modern cosmology by Peebles," are a valuable way to make quan-
titative statements about structure. The cross correlation was re-

cently introduced 22_24"25to quantitatively compare different simu-
lations. In this case, they had the same amplitudes and phases in

their initial conditions for a range of small k, and different am-

plitudes for large k. To the extent that the distributions are de-

termined by their long waves, they will be correlated. We adopted
the definition

K_b = -- (6)
O'aCll" b

as our cross correlation coefficient. K is not a function of distance:

we are assuming that O's are measured at the same point, which

implies some smoothing. We have also divided out the standard
deviation of each density field, so that two identical distributions
will have K = 1.
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Applyingthistothesimulationsverifiedthebeautycontestcon-
clusion:thereis a definitecorrelationbetweenpancakeandhi-
erarchicalmodelswiththesamephases.Thiscorrelationisweaker
for morepositiven but is still significantly different from zero for
tZ = 1.

The existence of filamentary structure in redshift surveys, once
dismissed as the result of overactive imagination, is now incon-

trovertible. However, we now understand clearly that this does

not imply that the pancake model correctly describes galaxy for-
mation. In order to get a reasonable density contrast, it seems

necessary to use a hierarchical model and assume that galaxies
form slightly more efficiently in high density regions (called bias-

ing)? On the other hand, it is clear that pancake dynamics are

generic in gravitational clustering, and describe the construction

of superclusters. We can now answer "yes" to the widely ignored
question posed by Zel'dovich in 1970.

Ten years ago, pancake and hierarchy were rival theories of

clustering, regarded as mutually exclusive. We now know that they
are valuable and complementary descriptions of a universal pro-
cess.
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